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Introduction

by
Peter Lynch

The paper appearing here for the first time in an English translation is a detailed study
of a low-order Hamiltonian system, the elastic pendulum. The original motivation for
the study was the desire to find a simple classical description for the quantum mechanical
phenomenon of the splitting of the spectral lines in the CO2 molecule. The study was
suggested to the authors by the Russian physicist L. I. Mandel’shtam. The 2:1 resonance
of the pendulum provides a classical analogue to the resonance of the quantum system
which has ionic oscillations with frequencies close to this ratio.

The simple system under study possesses a rich and varied range of dynamical
behaviour. For large amplitudes the motion is chaotic. Breitenberger and Mueller
(1981) remark that ‘this simple system looks like a toy at best, but its behaviour is
astonishingly complex, with many facets of more than academic lustre’. However, the
concern here is the range of amplitudes where the motion is regular so that classical
perturbation techniques yield meaningful results.

This work is the earliest comprehensive analysis of the elastic pendulum. Al-
though the paper is frequently referenced by later authors, it is clear that, in some cases,
they have not studied this work. Van der Burgh (1968) inaccurately describes the paper
as ‘a mainly qualitative description’; in fact, his own paper contains little that is not
already contained in Vitt and Gorelik!. Breitenberger and Mueller (loc. cit.) note that
this important paper has often been misquoted. Davidovié, et al. (1996) give a brief
but accurate synopsis of its contents, and state even more strongly that the paper has
been ‘more frequently quoted and misquoted than read by other authors’. I think this
is a fair point; it is time the work was available in English.

* * * * *

The contents of the paper will now be summarised. Vitt and Gorelik (1933)
consider the motion of an elastic pendulum confined to a plane, thus having two de-
grees of freedom. The authors set up the Lagrangian equations for the system, assuming
the amplitude is sufficiently small that terms beyond cubic order can be ignored. They
identify the linear vertical (springing) and horizontal (swinging) modes of the system.
They concentrate on the special case where the vertical frequency is twice the horizon-
tal frequency; in this case, each type of linear oscillation can induce the other through
nonlinear interactions. Vertical oscillations can induce horizontal motion through para-
metric resonance, whereas horizontal or swinging motion can lead to vertical springing
oscillations through direct resonant forcing.

In §2, periodic solutions are sought using the technique of secular perturbations.
Two distinct solutions are found in which the trajectory of the bob is a parabola.
For these particular solutions, the effect of the nonlinear interactions is to modify the
frequency of the oscillations, but preserving the 2:1 ratio. The cup-like solutions, with

llndeed, the incorrect reference given by Van der Burgh to the Vitt and Gorelik paper is identical
to that in Minorsky (1962, p.506), suggesting that he took the reference from there and not from the
original paper.
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concave-upward parabola, have frequency slightly depressed, the cap-like ones with
a concave-downward trajectory have a somewhat augmented frequency. There is no
energy transfer between the springing and swinging motion. These solutions are easily
demonstrated in the physical system.

In §3, solutions which transfer energy back and forth between the swinging
and springing motion are considered. A perturbed Hamiltonian is constructed, action-
angle variables are introduced, and the Hamiltonian is averaged with respect to the fast
variations, so that the lowest-order solution is immediate. An equation (equation (20)
in the paper) is derived for the slowly-varying amplitude of the horizontal oscillation.
The integral curves of the equation are illustrated, and the patterns of the trajectories in
phase-space are depicted, clearly illustrating both the generic behaviour and important
limiting cases. Curiously, although Eq. (20) is easily solved in terms of Jacobian elliptic
functions, the authors make no mention of this. A qualitative description of the energy
transfer follows, and an explicit formula for the modulation period is derived (equation
[21] in the translation, un-numbered in the original). Again, this may be expressed as
a complete elliptic integral of the first kind, though the authors do not say this.

In §4, the authors describe a series of experiments, and show that the theo-
retically calculated results are in good agreement with the observed behaviour of the
physical system. They make no reference to its three-dimensional motion. This is
surprising because, in their experiments, they cannot have failed to have noticed the
remarkable propensity of the bob to deviate from the original swing plane, either in a
precessing elliptical orbit, or in successive horizontal excursions with different azimuthal
directions. The three-dimensional motion is discussed in Lynch (1999). Probably, Vitt
and Gorelik did notice the interesting behaviour, but found it not directly relevant to
their goal of providing a classical analogue for quantum resonance.

In the concluding section, the nonlinear interaction of the elastic pendulum is
compared and contrasted to modal interactions in linear systems. One of the crucial
differences is the dependence of the non-linear interactions on the initial conditions.
The authors then discuss the original motivation for the work, the phenomenon of
Fermi resonance, seen in the line spectrum of CO; and in other molecules for which
there is a frequency ratio close to 2:1. Although this is a quantum-mechanical effect,
it is closely analogous to the classical phenomenon of nonlinear resonance seen in the
swinging spring.

* * * * *

Current interest in the swinging spring arises from the rich variety of its so-
lutions. For very small amplitudes, the motion is regular, and classical perturbation
theory yields valid results. As the amplitude is increased, the regular motion breaks
down into a chaotic regime which occupies more and more of phase space as the en-
ergy grows. However, for very large energies, a regular and predictable regime is re-
established (Nunez-Yépez, et al., 1990). This can easily be understood: for very high
energies, the system rotates rapidly around the point of suspension and is no longer
libratory.

Of course, the chaotic regime was not considered by Vitt and Gorelik, as the
relevant concepts were unavailable to them. However, recent studies have examined
this behaviour in some detail. A large list of references may be found in Lynch (2000).
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That paper considers the elastic pendulum as a simple model for balance in the atmo-
sphere. The concepts of filtering, initialization and the slow manifold, so important for
atmospheric dynamics, can be introduced and lucidly illustrated in the context of the
simple system. The swinging and springing oscillations act as analogues of the Rossby
and gravity waves in the atmosphere.

Finally we may remark that Jin, et al., (1994) have modelled the El Nifio phe-
nomenon using arguments based on transition to chaos through a series of frequency-
locked steps induced by non-linear resonance with the Earth’s annual cycle. Their model
produces results consistent with currently available data. Thus, the non-linear resonance
observed in our simple mechanical system may provide the basis for a paradigm of the
most important interannual variation in the ocean-atmosphere climate system.
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Oscillations of an Elastic Pendulum as
an Example of the Oscillations of Two
Parametrically Coupled Linear Systems

A. Vitt and G. Gorelik

Abstract*

This work investigates the oscillations of an elastic pendulum. Only planar oscillations
are considered and therefore only two degrees of freedom investigated, namely the ver-
tical and one of the horizontal dimensions. The investigation is based on the theory of
secular pertubations. Of particular interest is the case where the frequency of the verti-
cal motion is twice the frequency of the horizontal; this leads to a so-called parameteric
resonance of the coupled system, which manifests itself as an energy transfer from one
component to the other and vice versa. The speed and amplitude of the energy trans-
fer depend essentially on the inital conditions. Other mechanical or electrical systems
with two degrees of freedom can be treated in similar ways, e.g., two oscillating circuits
coupled by a transformer with an iron core. The results of the theory are compared
with experiment and are in complete agreement. Finally, a connection is indicated be-
tween the oscillations of an elastic pendulum and the model of the CO2 molecule which
was recently presented by Fermi to explain the splitting of the spectral lines for this
compound.

* Translated from the German by Klara Finkele, Met Eireann.
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Oscillations of an Elastic Pendulum as
an Example of the Oscillations of Two
Parametrically Coupled Linear Systems

A. Vitt and G. Gorelik

1. Introduction and Statement of the Problem

In this article a study is made of small oscillations around an equilibrium configuration
of a conservative system with two degrees of freedom, which is profoundly different from
the commonly studied and well-known linear! oscillatory systems with two degrees of
freedom. The difference is shown in the fact that, however many small oscillations there
are, the behaviour of the system in which we are interested here is essentially determined
by nonlinear terms appearing in its differential equations and expressing the coupling
between the two degrees of freedom. By way of a simple mechanical example of such a
system, we will examine an elastic pendulum, that is, a weight hanging on a spring, the
upper end of which is fixed in place. We shall assume that the movement takes place in
one definite vertical plane. Let r denote the instantaneous value of the spring’s length,
£, the length of the spring in the absence of a weight, ¢ the angle of deviation (we shall
always assume it to be small), m the mass of the pendulum’s bob, k the constant of
elasticity of the spring, and g the acceleration of gravity. For the kinetic and potential
energy of our system we have the following:

T = tm(7? 4 r?¢?)
V= %k('r —£y)? —mgr(1 — %(pQ)
where differentiation in time is indicated by dots.

We shall replace r by the coordinate z, equal to the relative lengthening of the
spring compared with its equilibrium length £ = £y + mg/k, that is, we shall assume

that
r—4f

14

As we are limited to the case of small oscillations, we shall consider that z is very small

2 =

in comparison with unity. Ignoring terms of order higher than the third order in z and ¢
and their products we obtain, for the kinetic and potential energy, the new expressions

2
T = % (32 4+ 6% + 22¢7) (1)
_m£2 k5 92,9 5
N 2)

Using (1) and (2) we now formulate Lagrangian equations of motion:

- k lg » .2Y) _
Z—I_EZ—I_(iZSO —(p)—() (3)

I That is, systems whose motion is represented by linear differential equations.



3+ 50+ (S0 +256 +229) = 0 (4)

An ordinary linear system with two degrees of freedom may be regarded—
especially when the coupling is weak—as a pair of two ‘component’ systems, each with
one degree of freedom, linearly coupled to each other. For example, two pendulums
joined by a weak spring are component systems doubly coupled one to the other, each
of which possesses its own ‘component frequency’ and can be isolated from the full sys-
tem by securing one of the pendulums, that is by depriving it of one of the degrees of
freedom. In exactly the same way, as equations (3) and (4) demonstrate, our elastic pen-
dulum can be regarded as a pair of two interconnected linear oscillators, each of which
is isolated from the full system when one of its degrees of freedom is isolated: thus,
preventing the weight from straying from the vertical (that is, assuming that ¢ = 0) we
obtain a vertical oscillator oscillating in accordance with the linear equation

z+ —2=0.
m

with an angular frequency a@ = 4/k/m; in preventing the pendulum from changing its
length, that is, by replacing the spring with a rigid shaft (in this case z = 0), we obtain
a horizontal oscillator oscillating in accordance with the linear equation

w g
Z0=0
&+ 5%

with an angular frequency g = \/_m These vertical and horizontal oscillators are
component systems with component frequencies a and 3. The coupling between the
component systems is nonlinear: this is shown by the nonlinear ‘coupling terms’ enclosed
in brackets in equations (3) and (4).

We know that the behaviour of weakly coupled linear oscillatory systems de-
pends essentially on the relationship between the component frequencies. If the latter
differ strongly from each other, the oscillation as a whole differs little from those os-
cillations which would have been produced by component systems in the absence of a
coupling; in the example of two pendulums connected by a weak spring, each pendulum
would oscillate approximately in the same way as if it were free. But the situation is
completely different when the component equations are equal to one another or, as we
say, when resonance sets in between the component systems. In this case energy is peri-
odically transferred from one pendulum to the other, and each pendulum thus performs
a modulated oscillation which may be represented by the sum of two sinusoidal oscilla-
tions with frequencies one of which is greater and the other smaller than the component
frequencies; it is as if, due to the coupling, the component frequency splits in two and
we observe a beating of these two frequencies. The stronger the coupling the more the
frequencies split up: that is, the faster the transfer of energy is produced.

In our case of nonlinearly coupled linear systems, when the oscillations are small
the nonlinear terms consist of small values of a high order and, generally speaking, they
are insignificant: the component systems have little influence on one another. We may
be sure that in some particular relationship of component frequencies, namely when
a = 23, a strong interaction between component frequencies should take place and we
may expect resonance phenomena somewhat analogous to those which arise in the case
of a linear coupling when component frequencies are equal.
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In practice:

1) We move the weight vertically from a position of equilibrium and we release
it, that is, we set up a vertical component oscillation

z= Acosat. (5)

As a result of this oscillation the length of our pendulum—its parameter—begins to
change periodically; when we substitute (5) into (4) we obtain for ¢ a linear equation
with periodic coefficients

(14 2Acosat)p — 2asinatp + B°(1 4+ Acos at)p = 0. (6)

Since @ = 23, the parameter of the system changes with a frequency double its own
frequency. But it is known that in this case the phenomenon of parametric resonance
begins. The pendulum becomes unstable. The smallest disturbance or deflection is
enough for it to begin to undergo ever increasing horizontal swings. Thus, in the case of
a = 23, the vertical oscillations cause the pendulum to swing in a horizontal direction.

2) First deflecting the pendulum, without stretching it, we set up a horizontal
component oscillation

¢ = Bcosf3t. (7)

The centrifugal force developing with this movement, reaching its maximum twice in
each oscillation, will stretch the spring periodically. Substituting (7) in equation (3) we
obtain

. BB

z+a‘z=

(1 —3cos2Bt), (8)

that is, the oscillator equation, under the influence of an external force with a sinusoidal
component having the frequency 23. But as 28 = a, this force will act in resonance on
the vertical oscillator, and the latter will begin to perform oscillations of ever-increasing
amplitude. Thus, in the case 28 = a, the horizontal oscillations cause the weight to
oscillate in a vertical direction.

It is clear that the systems of equations (5), (6) and (7), (8) preserve engergy
only at the start of the processes under consideration: each pair does not take into
account the reciprocal action of the ‘swinging’ oscillator on the oscillator ‘being swung’.
But the nature of this action arises directly from the fact that our system is conservative:
the energy of the ‘swinging oscillator’ can increase only at the expense of the weakening
of the oscillator ‘being swung’. Therefore in the case 1) the build-up of horizontal
oscillations should be accompanied by a decrease in vertical oscillations, and in case 2)
the build-up of vertical oscillations should take place at the expense of an attenuation of
the horizontal ones. In exactly the same way, in the case of linearly coupled pendulums,
the oscillations of the one build up at the same time as the oscillations of the other
die down. This gives rise to the problem: not limiting ourselves to the initial stages of
the movements, represented by equations (5), (6) and (7), (8), how to investigate the
movements fully for any and every initial condition and to characterise them; may there
not arise a periodic transfer of energy between the two degrees of freedom, analogous
to the one taking place in linearly coupled systems? Ignoring, in our case of a nonlinear
coupling, the reciprocal effect of the horizontal oscillation on the vertical one we obtain,
instead of a system of nonlinear equations (3), (4) not explicitly containing time, the
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linear equation (6) which clearly contains time: this is an equation of a linear system
with periodically changing parameters. Just as with a linear coupling, ignoring the
action of one partial system on the other one, we replace a system of linear equations
not explicitly containing time with a linear equation the right-hand side of which clearly
contains time, that is, with an equation of forced oscillations.? And just as the theory
of linearly coupled linear oscillatory systems is an extension of the theory of ordinary
resonance to the case where one must not ignore the reciprocal effect of a resonator on
the source of energy, the theory of our nonlinearly coupled systems may be viewed as an
extension of the theory of parametric resonance to the case where one must not ignore
the reciprocal effect of a parametrically created system on the source of energy which
modulates its parameters. For that reason it is appropriate to say that we are dealing
with parametrically coupled systems.

2. Periodic Solutions

Before we study the movements of our system in general we will satisfy ourselves that
equations (3), (4) possess solutions where z and ¢ are periodic functions—in the first
approximation, sinusoidal functions—of time and the initial conditions are such that
there is no transfer of energy between the component systems.

As we shall employ the pertubation method, we shall—to limit the order of
magnitude of the various values and in accordance with the assumption that z and ¢
are small—introduce the small parameter € by means of the equations

z = €T,

Y =€y.

Introducing variables z, y in equations (3), (4), ignoring terms of order higher than the

first in € and assuming that 4/k/m = 24/g/£ = 23, we obtain
1 48% = e (57— 10%7) ®)

§+ By = e (B’zy — 2iy) . (4)
When € = 0, these equations give us a periodic ‘unperturbed’ solution, in which z and
y are sinusoidal functions of time, whose frequency has the ratio 2:1. We will assume
that for € # 0 there is a periodic solution with ratio of frequencies 2:1, tending to this
solution when € = 0, and we shall find this periodic solution. We shall let w denote the
frequency of the horizontal oscillation in this ‘perturbed’ solution and we shall assume
that it is distinguished from the corresponding frequency of the unperturbed solution
by a magnitude of the order e. We have

w2:ﬁ2—|—ea

where a is a certain finite value. Introducing w? in (3'), (4’) and once more rejecting
terms of the order of €2, we obtain

i+ 4w’z =€ (y2 — %wzy2 + 4(1,.1:) , (3")

2 For example, in the case of two coupled electric circuits, if it is possible to ignore the action of
the secondary circuit on the primary one, it is possible to consider that a sinusoidal emf (electro-motive
force) is set up in the secondary circuit.



ﬂ+w2y:e(w2my—2i}y+ay) . (4")

We shall seek a solution in the form of series in powers of e:
T =xgt+exs+...

y=vyoteyr+...

Substituting these series in (3”), (4”) and equating the coeflicients in equal powers of
€, we obtain

:'l.:() + 4w2:c0 = 0, (3(1
Jo + dw?yo =0, (4a

&1 + dw’zy = g7 — %wag + 4azg , 3b

)
)

(3b)
i1 +w’yr = w’zoyo — 2E0%0 + ayo - (4b)

We shall write the solution of equations (3a), (4a), selecting a determined origin of time,
in the form:

zog = Acos2wt,
yo = Bicoswt + Basinwt.

In order for z, yo to be an approximately periodic solution of equations (3"), (4”), it
is necessary for the resonance terms to be reduced to zero when they are placed in the
right-hand side of equations (3b), (4b); that is, in the right-hand side of (3b) the terms
of frequency 2w and in the right-hand side of (4b) the terms of frequency w. These
conditions give the following system of equations for determining the amplitudes 4, B,
and Bs and the frequency w:

BB, =0,

4aA — %wQ(B% - B3)=0,

(a— ngA) B =0,
(a—|— gWQA) Bs =0.

This system permits a solution with three variants:

I) Bi =+v8A, By=0, w=w =8(1+32e4),
IT) B =0, By=1v84, w=ws=p4(1-3e4),
III) B,=B,=0, a=0.

Case III is the vertical oscillation already considered in the introduction. As we know,
it is unstable.

The Lissajous figure corresponding to oscillations of the types I and II are il-
lustrated in Fig. 1 [Figs. 1 to 5 appear on page 15 below|. The ratio of frequencies of
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oscillation I (slower than the unperturbed) and oscillation I (faster than the unper-

turbed) is
wo 3
— =1-—t€eA. 9
R ©)
When the oscillations are of types I and II, the coupling between the component systems
is effective only in that the frequency of their oscillation changes. No energy exchange

takes place between component systems.

3. Energy Transfer

We shall now pass on to a more general investigation of the motion of our systems.
Employing relations (1), (2), we shall introduce the momenta p; = 0T'/0z, p» = 0T /0¢,
and the conjucate coordinates z, ¢, and we shall construct the Hamiltonian function:

1 m/ 1 m/
H =g o0 92) + 5 (s 4 5707) —hams & 00207, (10)
Hy
where m’ = mf%. (As before, we shall ignore the higher powers of z.) The terms

designated together as H; correspond to the uncoupled component systems; the other
terms correspond to the perturbation introduced by the coupling.

Using the standard [canonical] transform?
J . am'J,
z= > sin 2w, , p1 = cos 2w
Tom T
Jo . "J
Y= 2_sin 2w, , P2 = pm’ I, cos 2mwo (11)
wBm’ T

we shall transform to ‘angle variables’ w, w2 and ‘action variables’ J;, J ( Winkel- und
Wirkungsvariabeln) of the unperturbed system, and the Hamiltonian function will be
written thus:

1
%(a.fl + £J2) +2‘\/L—/J2'\/ J1 sin 27r'w1(sin2 2wy — 2 cos’ 2mw,) . (10")
Y C 2my/mam

H,

H =

We shall temporarily discard the supposition that a = 23; let a and 8 be arbitrary. We
know from general theory that two different cases can occur:

a) a and f§ are not in a simple rational relationship; if the perturbation is
small (H — Hy)/H < 1) then the frequencies and amplitudes slowly change around
their mean (unperturbed) values; the corresponding variations are of the same order as

(H — H,)/H.

b) @ and 8 are in a simple rational relationship (degeneracy); in this case even a
small perturbation can give rise to a large change in amplitude, that is, of the same order
of magnitude as the unperturbed values. Since, in the problem being studied here, z and

3 See, for example, M. Born, Atommechanik, p. 293.
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¢ are small values, the perturbation is small and consequently noticeable energy transfer
from one component system to the other may be expected only where degeneracy exists.

We shall proceed to its analysis, using the method of so-called ‘secular perturbations’.*

Let @ = nyw, B = now, where ny, ny are whole numbers. We have

Hy = ;_r(nlJl +n2J2) .
[INOTE: V&G write I instead of J here.| In our case of degeneracy we can, on the basis
of general theory, introduce the new angle and action variables vy, vs, I1, I3, in such
a way that the Hamiltonian function of the unperturbed problem depends on one only
of the momenta, let us say I;. We achieve this, for example, by means of a canonical
transformation produced from the function

V = (n1J1 + n2J2)'U1 + J2'l)2 .

It gives the transformation equations

ov

IL = 5—=n1J1+n2d>
ovy
ov
Ih=—=1J
2 505 2
wy = 6J1 = M1
oV
wo = 6—(]2 = Ny —|— U9 (12)
and we obtain
I I, —nsl
H = % +~1> L sin 27rn1v1{sin2 2m(novi +v2) —2 cos? 27 (novy —{—vz)} (10")
T n
H,

where, for the sake of brevity, we set v = now/(27/mn10M’).

Hamilton’s equations for the unperturbed motion (H = Hj) are

d H
% — (?9—110 = ;_w’ whence v = (w/2m)t

d H

% = %I; =0, whence vy = const.
dI H

d—tl = _(?9'010 =0, whence I; = const.
dI. H

d—t2 = —%’020 =0, whence I = const.

The following reasoning is the basis for the method of secular perturbations. It
is assumed that, due to the perturbation, the value vy can become a function of time.

4 See M. Born, ibid, p. 123.



But, as the speed of its change dv,/dt — 0 as H — Hj, where values of (H — Hy)/H are
sufficiently small, the speed of variation of v, should be small in comparison with the
speed of variation of v; (‘secular’ variation). In exactly the same way, when (H — Ho)/H
is small, I} and I, if they are functions of time, can change only slowly. Later it
is assumed that in order to study the slow change of variables one can average the
Hamiltonian function with respect to the swiftly changing variable v; and, using the
averaged Hamiltonian function H, construct new Hamilton’s equations for the variables

I17I2'l]2.
_ I I —nols -
H:u+7IQ‘/17mf (13)
27 nq

where f is the mean with respect to v; of the function

In our problem

f = sin2wn v {sin2 2n(novy + va) — 2 cos? 2n(novy + '02)}

= —% sin 2mn v, — % cos 47r'v2{sin 2n(ny — 2no)vy + sin 27(ny + 2n2)'u1}

= % sin 47r'u2{cos 27r('n,1 — 2n2)'u1 — cos 27r(n1 + 2'n,2)'u1} .

If n1 = 2o, and in this case only, f is different from zero and we have
f= %sin 4o, . (14)

We find, after simplifying, a secular perturbation of motion of our systems. (For other
rational relations between frequencies, the perturbation becomes noticeable only when
the oscillations are sufficiently strong for the terms higher than the third order, discarded
by us in the Hamiltonian function, to have reached a significant size; this observation
agrees with the fact that in ordinary parametric resonance the region of instability,
corresponding to a = 28 is very much stronger—it has a different order of magnitude—
than the other regions.)

And so we shall return to the case where a = 23. Assuming that n; = 2n,, we
obtain (assuming, without loss of generality, that n, = 1, n; = 2 (i.e., that w = ) it
follows from (12) that

L, =2J,+ J,

I, =J,

wi = 21,

Wy = V1 + Vo (12%)

On the basis of (13), (14) we shall write the averaged Hamiltonian function

_ I
H = % + %7I2\/I1—7Igsin 47, , (15)

[leading to the canonical equations]

ar,  OF

o7 = _5—'01 =0, whence I} = a, an integration constant (16)
dI H 12
2 _ 0 = ~vI3+/a — I cos 4mvs (17)

dt _a’vg_%

d’l)g Bﬂ 3

e I Y Sa—T, — LT
dit BIQ \/§7< . 2 272

8

1
7]) sin 4wy (18)

a— 13



[NOTE: Coefficient corrected in (18).] We shall introduce the designation

g_vh
r_ 27
H = 3
VB!
[NOTE: correction in denominator.]| Our system is conservative: H = const; and,

because I; = a is also constant we have, in accordance with (15), (16):

H' = I,\/a — I sin 47vy = const. (19)

Denoting I = z for the sake of brevity, and eliminating v, from equations (17) and
(19), we obtain the differential equation

d
d—": = +y/—2% + az? — H” (20)

on which we shall base our discussion. [NOTE: the time variable has been re-scaled as
t' = (12y/4/8)t and the prime dropped; V&G omit mention of this.] We shall explain
beforehand the physical meaning of the variable z. On the basis of equataions (11) and
(12) we have

a—=T

z= / sin 47vq
2ram

z - sin 2m(v1 + v2) (11%)

mwom

SD:

from which it follows that z is proportional to the square of the amplitude of the
horizontal oscillation, and (a — z) is proportional to the square of the amplitude of the
vertical one. Equations (11’) show that when the amplitude of the horizontal oscillation
increases, the amplitude of the vertical one decreases, and vice-versa.

The integral curves of the differential equation (20) are expressed by means of

the equation
y =1t/ ®(2) (20")

where y = dz/dt and ®(z) = —z3 + az? — H'?. We shall introduce initial conditions:
when ¢t = 0, let I, = b and sin 47wy = ¢; then

H' =bcva—b

@(m) = —z° +az® — bzcz(a — b) ]

Both z and ¢ are real valued; equations (11’) show that, thanks to this, a can assume
only positive values, and b is confined to the range 0 < b < a. With these conditions
the function ®(z) has the following properties:

1) q)(:n) has its minumum when z = 0:

®(0) = ®(a) = —b*c*(a — b) < 0;

2) ®(z) becomes zero when b = 0 and when b = q;

9



3) <I>(:v) has its maximum when z = 2a/3:

®(2a/3) = %a?’ —b%c*(a—b) > 0;

4) ®(2a/3) becomes zero when b = 2a/3, ¢ = 1.

The form of the curves ®(z) is shown in Fig. 2 for a constant value of a and
for cases when ¢ = 1, for various values of b. For b = 0 or b = a we obtain curve I; for
b = 2a/3 we get curve IV; and for the other values of b we get curves of the form of II,

IT1.

Fig 3 shows the corresponding curves on the phase plane z, y. We have two
singular points—the saddle point (z = 0, y = 0) and the centre (z = 2a/3, y = 0). All
the integral curves not passing through these singular points have the form of closed
cycles intersecting the z-axis at right angles (because

dy B —3z% + 2azx
de  2,/%(z)

becomes infinite when ®(z) = 0 and —3z? + 2az # 0).

The centre corresponds to those motions in which the amplitudes of the hori-
zontal and vertical oscillations remain constant, i.e. periodic movements. It is not hard
to be convinced that the centre corresponds precisely to the periodic motions which we
calculated in §2. Furthermore, one or other of these oscillations occurs whichever sign
we select before /®(z).

With b slightly different from 2a/3, the representative point describes a small
cycle round the centre, and there takes place a small periodic transfer of energy from the
vertical oscillation to the horizontal and back: the amplitudes remain close to the values
corresponding to periodic solutions. From this it follows that the latter are stable. The
more accurately the initial conditions approximate b = 2a/3, ¢ = 1, the more accurately
can they, with experience, be realized.

The more strongly b differs from 2a/3, the larger the cyclic changes of amplitude
and the larger the energy transfer. With b/a < 1 or (a, — b)/a, < 1, we have an almost
total energy transfer from an angular oscillation to the vertical and vice-versa (curve II).
This transfer takes place periodically with a period of

dz
T=0 ——, [21]
V/®(z)
where the integral is taken along the corresponding closed cycle.

Finally, the saddle corresponds to a periodic movement in which z = 0, that is,
there are no horizontal oscillations nor, consequently, any transfer of energy. We see once
more that this movement is unstable; if there is the slightest change in initial conditions
the representative point begins to move along one of the cycles. When the initial
conditions correspond to curve I we have a critical solution: the representative point
approaches the origin after infinite time. With initial conditions closely corresponding
to curve I, there occurs a nearly total energy transfer from one oscillation to the next,
and this process takes an extraordinarily long time.

10



We obtain the following general result: the speed and extent of the transfer
of energy from one component system to another depend on the initial conditions. It
is possible to have initial conditions under which energy transfer is completely absent
(periodic solutions) and where component systems behave like uncoupled ones. It is
possible also to have initial conditions under which energy transfer takes place fully and
the ‘coupling’ of component systems is very great.’ Finally, it is possible also to have
all the intemediate degrees of ‘coupling’, depending on the initial conditions. These
relationships are utterly alien to linearly coupled linear systems, where the extent and
speed of the transfer—and hence also its ‘coupling’—depend exclusively on the structure
of the system itself (on the ratio of the component frequencies and on the coeflient of
coupling). Translating this contrast into spectral language, we can say that, when we
have a linear coupling, the freqencies and relative intensities of the coupled system do
not depend on initial conditions; where the coupling is nonlinear, both the freqencies and
the relative intensities of the components are essentially determined by initial conditions.

A completely analogous treatment holds too in the case where o is not exactly
equal to 2. Introducing a new small parameter, the ‘frequency difference’ 77, we have

a=20+n.

In this case the Hamiltonian function can be presented in the form

B

T or

(2J1+J2) + 5= +

H
Here the ‘unperturbed’ Hamiltonian function is once more degenerate, and we can
employ transformation (12') and the method of secular perturbations.

There is one more remark to be made. For the application of the method of
secular pertubations to be valid, it is necessary for vy to be a slowly changing function
of time over the entire course of the motion. On the basis of equations (18) and (19)
we obtain

3
d'vg_ /(1—511}

dt z:\/H’

from which it follows that this requirement breaks down around the points z = 0 and
z = a, and it is possible therefore that a doubt may arise as to the correctness of our
judgments. But this doubt is easy to eliminate: in fact, the points z = 0 and z = a
correspond, on the basis of (11’), to the conditions where there are respectively only a
vertical and only a horizontal oscillation. Around these points, therfore, the course of
the process can be traced perfectly strictly with the help of the linear equations (6) and
(8), which corroborate the results obtained above.

4. Experiments

All the results obtained here can be very easily verified and demonstrated in an exper-
iment. We used a good (weakly damped) steel spring, from which it was possible to

Here we employ, following L.I.Mandel’stam, the term ‘coupling’ for the characteristic of
interaction of partial systems, while the term ‘coefficient of coupling’ describes only a mechanism
by means of which component systems can interact with each other. In linear terms, in particular,
‘coupling’ depends not only on the degree of interconnection but also on the ratio of the component
frequencies.
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suspend various weights. The spring was mounted on a stand. The periods of oscillation
were counted on a stop watch. With the use of an electric light, a shadow of the weight
and the spring was projected onto a screen. A grid of the polar coordinates was traced
on the screen, allowing us to assign the necessary values to z and . (If the oscillations
of the spring take place in a plane parallel to the screen and if the vertical plane passing
through the lamp and the point where the spring is suspended is perpendicular to the
screen, then z and ¢ can be measured directly from the position of the shadow on the
coordinate grid.)

By varying the mass of the weight (by trial and error) the relation o = 23 was
achieved, in which, by drawing out the spring by any small amount we chose, it was
possible to observe the phenomenon of parametric resonance and the resulting transfer
of energy. In accordance with theory, the complete energy transfer began to take place
after very small initial sideways displacements. Again, in accordance with the theory
of parametric resonance, when there was a frequency difference, energy transfer was
observed only where the initial stretching exceeded a certain minimum value. These
minimum values increased as the frequency difference increased.

We demonstrated, for the case o = 283, motions corresponding to the periodic
solutions found earlier. A random initial angular deviation was taken and the initial
values of z were calculated for the two corresponding periodic solutions (Fig. 1). The
weight was displaced in a plane parallel to the screen so that its shadow fell on the point
calculated, and was released without any initial velocity. It was possible to observe a
| J-shaped and a ()-shaped oscillation, depending on whether the initial z was positive
or negative. The stop-watch detected the difference in frequency of these oscillations,
and this could be compared with the one calculated from equation (9).

In the table below the calculated and observed values of the ratio ws/w; are
compared.

Table
Yo wa [wi wo /Wi
(Degrees) Observed Calculated
3.75 0.99 0.97
7.5 0.95 0.93
15 0.85 0.86

A study of the transfer of energy was carried out in the following fashion: a series
of initial declinations g, zg was assigned without any initial velocity, corresponding to
various values of b with the same value of integration constant a (see §3). The size of
the initial declination and the initial tension are coupled, with a and b constant and in

the absence of initial velocity, by the equation,
2 2 a
4z = ——
Po + 420 o’

obtained from (11), (12’) and (16).

In practice, complete energy transfer was observed, in accordance with theory,
with very small values of b, and also where b is close to a. With intermediate values of

12



b the energy transfer was not total, and when b = 2a/3, there was a complete absence
of energy transfer, that is, we encountered once more periodic movements.

The curve in Fig. 4 represents the measured dependence of the duration 7 of the
cycle of energy transfer on the size of b when a is unchanged. Where ¢ < 1.8°, we did
not obtain definite results, as the accuracy of the assignment of initial conditions was
then less than the size of chance deviations.

5. Conclusion

To conclude, we shall make a short comparison between the oscillations of linearly
coupled linear systems and the case analysed here of the oscillations of nonlinearly
coupled linear systems, and then we shall indicate the link between the the problems
considered here and other problems of physics.

In linearly coupled systems: In our example:
1) We have a generalization of the theory We have an analogous generalization
of normal resonance, where reciprocal of the theory of parametric resonance.

action should be taken into account.

2) A strong reciprocal action of the A strong reciprocal action of the
component systems occurs when their component systems is possible when
frequencies are close to one another. one of them has a frequency about

twice that of the other one.

3) The rate of the energy transfer does The rate of the energy transfer
not depend on the initial conditions depends on the initial conditions.

The present work may be of interest for the explanation and calculation of phe-
nomena taking place in more complex mechanical systems, and also in electromagnetic
circuits with a nonlinear coupling (a magnetic one through a transformer with iron, or
an electrical one, through a condensor with Seignette [or Rochelle] salt). It has already
arisen in connection with an examination of a model of the molecule CO», the quantum
theory which Fermi recently provided.® This theory explains the structure of the lines
of Raman scattering in carbonic acid.

Optical and electrical data lead to the model of the molecule CO5, illustrated
in Fig. ba. Spectral measurements and theoretical considerations lead to the conclusion
which, in terms of classical mechanics, can be formulated thus: in the molecule it is
possible for there to be ionic oscillations, whose form is shown in Fig. 5b, 5¢, and the
frequency of the first oscillation is approximately equal to twice that of the second one.”
This model of the CO5 molecule is analogous to our elastic pendulum: the role of the
vertical oscillation is played by the oscillation in Fig. 5b, and the role of the horizontal
oscillation is played by the one in Fig. 5c. Transferring the results obtained by us to the
molecule CO2, we see that there is, according to classical mechanics, an energy transfer
from one oscillation to the other which likewise gives rise to a splitting of the lines of

5 E. Fermi, 7. fir Physik, 71, p. 250, 1931.

More accurately, these frequencies are respectively equal to 3.90 x 10~12 sec. and 2.02 x 10~12
sec. There is also a third oscillation which has no role in the phenomena of interest to us. [Note: V&G
write 1012, not 10712].
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Raman scattering.® We obtain a sophisticated result, partially agreeing with the one
given by quantum mechanics.

Naturally, the only theory adequate for the phenomena taking place within
atoms and molecules is quantum mechanics. Nevertheless, in the area of those compar-
itively slow ionic oscillations which generate infrared radiation and Raman scattering,
classical mechanics can still give a certain good quality approximate representation of
the true relationships—a representation which has the advantage of being clear. From
the point of view of classical mechanics, the oscillation of ions in the molecule should be
viewed as an oscillation of linear oscillators coupled either linearly or nonlinearly. For
this reason, when the optics of molecules are given a classical interpretation, cases can
occur which are not only appropriate to the usual model of linearly coupled systems,
but also analogous to the case which is being studied here.

The subject of the present work has been initiated and formulated by L. I. Man-
del’shtam. We are truly grateful to him for his valuable comments.

Moscow, Received by the editors
Scientific Research Institute of Physics, 8 October 1932.
Moscow State University, Oscillations Laboratory.

Figure Captions

Figs. 1 to 5 (opposite) are reproduced directly from the original Russian version.

Fig. 1: Lissajous figure of periodic motions.
Fig. 2: Family of curves ®(z) for various values of b.
Fig. 3: Family of curves in a phase plane.

Fig. 4: Dependence of the period of energy transfer on the
initial declination for constand values of a.

Fig. 5: Molecule of CO» and its component oscillations.

8  The scattered light wave will not be modelled periodically, but by a near-periodic ionic

oscillation.
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